
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 41, NO. 1, JANUARY 1993 121 

On Self-Routing in Clos Connection Networks 
Barry G. Douglass, Member, IEEE, and A. Yavuz Oruq, Senior Member, IEEE 

Abstract-A self-routing connection network is a switching de- 
vice where the routing of each switch can be determined in terms 
of the destination addresses of its inputs alone, Le., independent 
of the routing information regarding the other switches in the 
network. One family of connection networks that were considered 
in the literature for self-routing are Clos networks. Earlier studies 
indicate that some Clos networks can be self-routed for certain 
permutations. This paper proves that the only category of Clos 
networks that can be self-routed for all permutations are those 
with at most two switches in their outer stages. 

I. INTRODUCTION 
HIS paper considers the self-routability of Clos networks. T Such networks find applications as connectors in tele- 

phone switching and interprocessor communications in parallel 
computers [15], [lo], [5], [9] and have been the focus of much 
research. An n-input Clos network [4] where n = mlc for some 
positive integers m and I C ,  consists of three stages as depicted 
in Fig. 1. The first and third stages of the network, each, 
consist of n/mm x m switches which may be implemented 
as crossbars, or by other smaller Clos networks and this 
may be recursively repeated. The center stage consists of 
m n/m x n/m switches which are similarly implemented. The 
network has exactly one link between every two switches in 
its consecutive stages. Throughout the paper the switches in 
the first stage will be denoted ISi ,  those in the third stage 
will be denoted OSi where 1 I: i 5 n/m, and the switches in 
the center stage will be denoted MSi where 1 5 i 5 m. The 
network itself will be denoted CL(n, m). 

The networks we consider in this paper are all Clos net- 
works, but possibly with different values of m. Two Clos 
networks will be of particular interest: the Clos network with 
m = 2 which is widely referred to as the Benes network in 
literature [l], and that with m = n/2, which is called the 
complementary Benes network [14], [3], [7]. 

Let E, denote the set of all n! permutation maps over a set 
of n elements. It is known that an n-input Clos network can 
realize each of these n! permutations [l]. This means that, for 
each permutation p E E,, the network contains a set of disjoint 
paths between its inputs and outputs so as to connect input i 
to output p ( i ) ;  i = 1 ,2 ,  . . . , n. While this fact guarantees that 
a Clos network exhibits a set of disjoint paths corresponding 
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Fig. 1. An n-input Clos network. 

to each permutation in E,, it does not show how such a set of 
vertex disjoint paths can be formed. This problem is commonly 
referred to as the network control, or network routing problem, 
and has been posed in two different ways in the literature. 
The first approach, called global routing, assumes that there 
is a single controller (some kind of program or procedure) 
which receives the entire permutation p as input, and computes 
the settings for the switches in the network directly from this 
information. In contrast, the second %pproach, which is called 
self-routing, divides the information about the permutation p 
over the switches in some particular way, and this information 
can be transmitted only over the paths which exist between the 
switches. More precisely, a switching network is called self- 
routing if each of its switches can determine its setting only 
from the destination addresses of its own inputs, regardless 
of the destination addresses of the inputs of other switches in 
the network. 

Much work has been reported on global routing schemes 
for Clos networks, both in sequential and parallel algorithm 
domains (see, for example, [13], [12], [8]). We shall not deal 
with such routing schemes in this paper. It suffices to say 
that global routing either requires too much time or too much 
hardware. For example, on a single processor, the n-input 
Benes network needs O(n  log, n)  steps to program and this 
is incompatible with the network’s O(log, n )  path length [?I, 
[13]. The programming time can be reduced to O(logi n) ,  
by using an n-processor parallel computer, but this requires 
interconnection networks which cost more than the Benes 
network itself [ll], [8], [3].  

These problems with global routing have prompted some 
research on the self-routing aspect of Clos networks. Nassimi 
and Sahni established that many permutations, frequently used 
in parallel computations, and which they named class F,  can 
be self-routing through the Benes network [12]. Recently, Bop- 
pana and Raghevandra showed that many more permutations, 
which they named class L ,  can also be self-routed by the 
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Fig. 2. The Benes network. 

same network [2]. Most recently, it was shown in [7] that the 
complementary Benes network can be self-routed. 

Given these results, a question naturally arises as to whether 
Clos networks can self-route all permutations. The main result 
of this paper is the answer to this question in the negative. 
In Section 11, it is shown that all Benes networks with more 
than five inputs are not self-routing. More generally, in Section 
111, it is shown that no Clos network whose first stage contains 
more than two switches is self-routing. The paper is concluded 
in Section IV. 

11. SELF-ROUTABILITY OF BENES NETWORKS 

First, consider the self-routability of the Benes network 
which is depicted in Fig. 2. It is obvious that the Benes 
networks with one and two inputs are both self-routing. Some 
additional thought reveals that the Benes networks with three 
and four inputs are also self-routing. Furthermore, given that 
the 4-input Benes network is self-routing, it is easy to see that 
the 5-input Benes network is also self-routing if its fifth input 
and output are connected to both switches in the center stage. 

We prove that these are the only Benes networks which can 
be self-routed. The proof is carried out by first observing that 
the number of inputs which are mapped to each half of outputs 
in such a network is constant over all permutations in E,. We 
then classify the types of switches in the first stage according 
to how their inputs are mapped to each half of outputs under 
permutations in E,. Next, we prove that for all even n 2 8, 
there exist permutations in En which, when modified in a 
certain way, force the number of inputs mapped to the two 
halves of outputs through a center-stage switch to change. 
This then leads to the proof that the Benes network is not self- 
routing for all even n > 8. What remains to be considered is 
the case for n = 6, and networks with odd numbers of inputs 
both of which we will handle separately. 

Let R1 denote the set of outputs of the first [n/41 switches 
and R2 denote the set of outputs of the next Ln/4] switches in 
the third stage of an n-input Benes network. Let &. denote the 
number of inputs which are mapped into Rj by permutation 
p through center-stage switch MSi where 1 5 i,j 5 2. 

Proposition 1: p$ = Jn/41 and p:,2 = Ln/4J for all 
p E C,,n even, and 1 5 i 5 2. 

Proof Each center stage switch has n/2 output links, one 
to each of the n/2 third stage switches. Exactly rn/21 of these 
are connected to OS1 ,0S2 , .  . . , OSy,/41 whose outputs define 
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Fig. 3 .  Type 3 switches in a Benes network. 

R1, and the rest Ln/4J to OSy,/41 +I ,  oSrn/41+2, . . . > OSn/2 
whose outputs define R2. Since all n output links between the 
center and third-stage switches must be occupied to realize any 
permutation in E,, each p E C, must map [n/41 inputs into 
R1 and Ln/4J inputs into R2 through the n/2 output links of 

Let SCj denote the set of switches in the first stage of an 
n-input Benes network one input of which is mapped to Ri 
and the other input of which is mapped to Rj by p E E, 
where 1 5 i 5 j 5 2. Call the switches for which i = j = 1, 
switches of type 1, those for which i = j = 2, switches of 
type 2, and those for which i = 1, j  = 2, switches of type 3. 
Then the following statements hold. 

Proposition 2: For all even n 2 8 there exists a permuta- 
tion p E C, for which IS:,,l 2 3. 

Proof: For n 2 8, the first stage contains at least four 
switches. Choose p so that at least three of these switches 

0 
Proposition 3: For all even n 2 8 there exists a permu- 

tation in Cn which maps one input of each of at least two 
first-stage switches of type 3 to R1 through the same center- 
stage switch, and the other inputs of these two switches to R2 
through the other center-stage switch. 

Proof: From Proposition 2, there exists at least four first 
stage-switches any subset of which can be fixed as type 3 
switches by choosing an appropriate permutation in E,. If at 
least three are fixed as type 3 switches, then, obviously, that 
permutation must map one input of each of at least two of 
these switches into R1 through the same center-stage switch, 
and their other inputs into R2 through the other center-stage 
switch. 1 )  

A graphical construction of this proposition is depicted in 
Fig. 3. It is seen that the first three switches in the first 
stage are fixed as type 3, and the first two map one of their 
inputs to R1 through the upper center-stage switch, and their 
other inputs to R2 through the lower center-stage switch. The 
third switch routes one of its inputs to R1 through the lower 
center-stage switch and its other input to R2 though the upper 
center-stage switch. The fourth switch is left unspecified, even 
though it should also be of type 3 as implied by the following 
proposition. 

Proposition 4: JR;J = 21S$l + JS:,,J;l 5 i 5 2, and 
IS:,,l - IS&J = [n/41 - Ln/4J for all p E E,. 

each of the center-stage switches. 

belong to Sf,2. Obviously, p is not unique. 
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Fig. 4. The partial setting of a Benes network under permutation p. 

Proof: That [Ril = 21S&l + lSf,21;l 5 i 5 2 is 
obvious since each first-stage switch of type 1 as well as 
type 2 contribute two inputs, and each first-stage switch of 
type 3 contributes one input to Ri. That ISf,,l - IS;,,l = 
[n/41 - Ln/4] follows immediately from the fact that Ri = 
21S&I + lSf,21;l 5 i 5 2, and R1 = 2[n/41, and R2 = 
2 1 4 4 1 .  0 

We now state the main result of this section. 
Theorem 1: No Benes network with an even number of 

inputs equal to, or greater than eight can be self-routed. 
Proof: First, by Proposition 2, construct a permutation 

p for which ISf,,l 2 3. Then by Proposition 3,  we can find 
two first-stage switches of type 3,  say ISz  and IS ,  such that p 
maps one input from each to R1 through the upper center-stage 
switch, and the other input from each to R2 through the lower 
center-stage switch as shown in Fig. 4. Call the inputs to the 
first of these two switches X I ,  5 2 ,  and the inputs to the second 

Now construct another permutation, say q E E, such that 

other inputs x over which p is defined, Le., the remaining 
inputs of the network. Since only the outputs of x2 and y l  have 
changed under q,  the network can accomodate this change 
only by redefining the states of the two switches to which 
these inputs are connected if it is to be self-routing. However, 
regardless of how the two switches are set, now both inputs 
to both switches are to be mapped to the same set of outputs, 
i.e., both inputs of IS ,  to R1, and both inputs of IS ,  to 
R2. Therefore, the number of inputs which are routed to R1 

through the upper center-stage switch decreases by one, and 
the number of inputs which are routed to R1 through the lower 
center-stage increases by one. A similar change occurs in the 
number of inputs which are routed to R2. But this contradicts 
Proposition 1 which states that the number of inputs which are 
mapped to each half of outputs of a Benes network through 
each of its center-stage switches is constant for all p E E,. 
Hence the statement follows. 0 

We now consider the remaining cases. For n = 6, the Benes 
network has three switches in each of its outer stages and 
two switches in the center stage. In order for the network 
to be self-routing, the setting of each switch must be fixed 
for each pattern of inputs it receives. In Fig. 5 we list a 

Y l , Y 2 ,  so that P(xl),P(Yl) E R1, and P(x2),P(Y2) E R2. 

q(x2) = P(Y1)  and q(7J1) = P ( Z 2 ) ,  and Q ( Z )  = P ( Z )  for all 
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Fig. 5. A sequence of routings for the 6-input Benes network. 

sequence of permutations and their realizations on a 6-input 
Benes network. In Fig. 5(a), switch IS1 is arbitrarily fixed so 
that input 1 is routed to output 4 through switch M S l ,  and 
input 2 is routed to output 1 through MS2. The settings of 
switches IS2 and IS3 are then determined. (In fact, IS3 can 
be set either way, but this does not alter our argument.) In 
Fig. 5(b), the destinations of IS1 and IS3 have changed, and 
the destination of the inputs of IS2 are kept the same as in 
Fig. 5(a) as highlighted by shading. Therefore, the setting of 
IS2 remains the same and the settings of the other switches 
are then determined. Continuing in the same way, we arrive at 
Fig. 5(d), and find that the setting of IS1 disagrees with that 
in Fig. 5(a) even though the destinations of its inputs remain 
the same. We conclude that the network is not self-routing. 

As for odd values of n 2 7, it is easily seen that a 
Benes network with an odd number of inputs can be obtained 
by adding an input and output to the Benes network with 
n - 1 inputs, and connecting them to both of the center-stage 
switches. The proof that a network with odd number of inputs 
is not self-routing is then an immediate consequence of the 
proof that the network with one less inputs is not self-routing. 

Thus, we have established the following. 
Theorem 2: An n-input Benes network is self-routing if 

and only if n 5 5. 

111. SELF-ROUTABILITY OF CLOS NETWORKS 

Theorem 1 can be extended to Clos networks as follows. 
First, we divide the outputs into two halves R1 and R2 as 
before, and extend the definition of a type 3 switch as one 
which sends exactly m/2 inputs to R1, and m/2 inputs to R2. 
Then we note that Proposition 2 still holds for the extended 
type 3 switch. Therefore, for n / m  2 4, we can construct a 
permutation, say p ,  so as to have at least three type 3 switches. 
Furthermore, along the lines of Proposition 3, we can find a 
switch, say MSi ,  in the center stage such that p sends one 
input of each of at least two type 3 switches to R1 through 
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MSi. With these statements, we can now prove the following 
statement. 

Theorem 3: The CL(n,  m) network with n l m  2 4, and 
even m 2 2 is not self-routing. 

Proof: As specified above, choose a permutation, p so 
that MSi receives one input from a first-stage switch IS ,  of 
type 3 and one input from another first-stage switch IS ,  of 
type 3 both going to R1. Now, by interchanging the inputs 
of these two switches only, construct a permutation q under 
which all inputs of IS ,  go to R1, and all inputs of IS ,  go to 
R2, and which, otherwise, is identical to p .  With this change, 
regardless of how the inputs of the two switches are routed, 
MSi must send one input from IS ,  to R1, and one input 
from IS ,  to R2. But, since the destinations of the inputs of 
all switches except those of IS ,  and IS ,  remain unchanged 
under q,  this requires that the number of inputs which are 
mapped to R1 through MSi decrease by one, and the number 
of inputs which are mapped to R2 through MSi increase by 
one. However, this contradicts the fact that the number of paths 
from MS; to R1 and R2 is fixed, and hence the statement.0 

There are two cases which remain to be considered. That 
Clos networks with odd values of m cannot be self-routed 
immediately follows from the above theorem. The case for 
n l m  = 3 can be proven by constructing a counter example 
which is analogous to that in Fig. 5, and is omitted here. 

Combining the above statements we now have the following 
theorem. 

Theorem 4: The CL(n,  m)  network is self-routing if and 
only if n l m  5 2, or m = 1. 

IV. CONCLUSION 
This paper has established that an n-input Benes network is 

self-routing if and only if n 5 5. More generally, it has been 
shown that an n-input Clos network, with m-input switches 
in its outer stages, is self-routing if and only if n l m  5 2, 
or m = 1. On a more positive note, the authors showed in 
another paper [6] that the same network can self-route at least 
(m!)n/m((n/m)!)m permutations. For m = 6, this gives a 
network with O ( d 5 )  cost and 0(1) delay that can self-route 
at least ( 2 ~ n 1 / 2 ) ” ( 1 / 2 ) ( n / e 2 ) ”  permutations. It remains to be 
shown if this lower bound is tight, i.e., whether or not more 
permutations can be self-routed by the same network. 

Along a different direction, in that same paper [6] the 
authors introduced a weaker form of self-routing which relies 
on balancing routes in Clos networks. In particular, it was 
shown that an n-input Benes network can be modified so 
as to have a network that can realize all permutations with 
O ( n  log; n)  gates and in O(logl n)  constant fan-in gate 
delays. 
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